Binomial Theorem

The Binomial Theorem is used for expanding brackets in the form $(a+b)^{n}$
$(a+b)^{n}=\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2}+\binom{n}{3} a^{n-3} b^{3}+\cdots+\binom{n}{n} a^{0} b^{n}$

Example

You can use either Pascal's Triangle or combinations to find the coefficients
$\left(2 x-\frac{3}{x}\right)^{4}=1(2 x)^{4}+4(2 x)^{3}\left(-\frac{3}{x}\right)^{1}+6(2 x)^{2}\left(-\frac{3}{x}\right)^{2}+4(2 x)^{1}\left(-\frac{3}{x}\right)^{3}+1\left(-\frac{3}{x}\right)^{4}$
$\left(2 x-\frac{3}{x}\right)^{4}=(2 x)^{4}+\binom{4}{1}(2 x)^{3}\left(-\frac{3}{x}\right)^{1}+\binom{4}{2}(2 x)^{2}\left(-\frac{3}{x}\right)^{2}+\binom{4}{3}(2 x)^{1}\left(-\frac{3}{x}\right)^{3}+\left(-\frac{3}{x}\right)^{4}$
We can see that the numbers in rows of Pascal's triangle are combinations:

Extending the Binomial Theorem to Fractional and Negative Indices

We can use the Binomial Theorem to expand $(a+b)^{n}$ when n is not just a positive integer.
This form of the formula is useful:

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

We need to write the expansion in the correct form:
$(a+b)^{n}=\left(a\left(1+\frac{b}{a}\right)\right)^{n}=a^{n}\left(1+\frac{b}{a}\right)^{n}$

Example

$$
\begin{aligned}
(2+x)^{-1} & =\left(2\left(1+\frac{x}{2}\right)\right)^{-1}=2^{-1}\left(1+\frac{x}{2}\right)^{-1} \\
& =\frac{1}{2}\left(1+(-1)\left(\frac{x}{2}\right)+\frac{(-1)(-2)}{2!}\left(\frac{x}{2}\right)^{2}+\frac{(-1)(-2)(-3)}{3!}\left(\frac{x}{2}\right)^{3}+\cdots\right) \\
& =\frac{1}{2}\left(1-\frac{x}{2}+\frac{x^{2}}{4}+\frac{x^{3}}{8}+\cdots\right) \\
& =\frac{1}{2}-\frac{x}{4}+\frac{x^{2}}{8}-\frac{x^{3}}{16}+\cdots
\end{aligned}
$$

This infinite series is only valid when $\left|\frac{x}{2}\right|<1$ or $|x|<2$

