De Moivre's Theorem

Polar Form	$[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta)$
CIS Form	$(r c i s)^{n}=r^{n} \operatorname{cisn} \theta$
Euler Form	$\left(r e^{i \theta}\right)^{n}=r^{n} e^{i n \theta}$

You are often required to convert between Cartesian and Polar Form, so draw sketches of Argand diagrams. Two examples are shown below.

Powers of Complex Numbers

Given that $z=\sqrt{3}+i$, work out z^{8}

Write z in Polar Form.

$$
|z|=\sqrt{(\sqrt{3})^{2}+1^{2}}=2
$$

$$
\arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}
$$

$$
z=2 \operatorname{cis} \frac{\pi}{6}
$$

$$
z^{8}=\left(2 \operatorname{cis} \frac{\pi}{6}\right)^{8}
$$

Use de Moivre's Theorem to find z^{8}

We are often required to put the answer back into Cartesian Form

Notice that there is only one answer

$$
z^{8}=-128-128 \sqrt{3}
$$

Roots of Complex Numbers

Find the roots of the equation $z^{3}=-8 i$

