One root of the equation $z^2 + bz + c = 0$ is 2 + 3i where $b, c \in \mathbb{Z}$. Find the value of b and the value of c.

If z = 2 + 3i is a root ...then, the complex conjugate $z^* = 2 - 3i$ is also a root

Factors of the equation are z - (2 + 3i)z - (2 - 3i)

The equation is
$$a(z - (2 + 3i))(z - (2 - 3i)) = 0$$

 $a(z - 2 - 3i)(z - 2 + 3i) = 0$
 $a(z^2 + (-2 + 3i)z + (-2 - 3i)(-2 + 3i)) = 0$

Since $z^2 + bz + c = 0$, a = 1

$$z^{2} + (-2 + 3i)z + (-2 - 3i)z + (-2 - 3i)(-2 + 3i) = 0$$
$$z^{2} - 4z + 4 - 9i^{2} = 0$$
$$i^{2} = -1$$
$$z^{2} - 4z + 13 = 0$$