The equation $2 z^{4}-9 z^{3}+p z^{2}+q z-174=0, p, q \in \mathbb{Z}$ has two real roots α and β and two complex roots γ and δ, where $\gamma=2-5 i$.
a. Show that $\alpha+\beta=\frac{1}{2}$.
b. Find $\alpha \beta$.
c. Hence find the two real roots α and β.
d. Find the values of p and q.
a.

$$
2 z^{4}-9 z^{3}+p z^{2}+q z-174=0
$$

If $\gamma=2-5 i$ is a root \ldots then $\delta=2+5 i$ is also a root

$$
\begin{aligned}
& \text { Sum of roots } \\
& \qquad \begin{array}{l}
\\
\\
\qquad \begin{array}{l}
\alpha+\beta+\gamma+\delta=\frac{9}{2} \\
\\
\\
\\
\\
\\
\alpha+\beta+\beta+4=\frac{9}{2} \\
\\
\\
\alpha+\beta=\frac{1}{2}
\end{array}
\end{array} . \begin{array}{l}
\\
\end{array}
\end{aligned}
$$

b.

$$
\begin{aligned}
& \text { Product of roots } \\
& \qquad \begin{aligned}
& =-\frac{174}{2}=-87 \\
& \alpha \beta \gamma \delta=-87 \\
& \alpha \beta(2-5 i)(2+5 i)=-87 \\
& \alpha \beta\left(4-25 i^{2}\right)=-87
\end{aligned}
\end{aligned}
$$

$$
i^{2}=-1
$$

$$
\alpha \beta(29)=-87
$$

$$
\alpha \beta=-3
$$

C.

$$
\alpha+\beta=\frac{1}{2} \Rightarrow \beta=\frac{1}{2}-\alpha
$$

$\alpha \beta=-3$

$$
\alpha\left(\frac{1}{2}-\alpha\right)=-3
$$

$$
\frac{1}{2} \alpha-\alpha^{2}=-3
$$

$$
\alpha-2 \alpha^{2}=-6
$$

$$
2 \alpha^{2}-\alpha-6=0
$$

$$
(2 \alpha+3)(\alpha-2)=0
$$

$$
\alpha=-\frac{3}{2}, \alpha=2
$$

$$
\beta=2, \beta=-\frac{3}{2}
$$

The two real roots are $2,-\frac{3}{2}$
d.

The equation is $a(z-2)(2 z+3)(z-(2-5 i))(z-(2+5 i))=0$

Since $2 z^{4}-9 z^{3}+p z^{2}+q z-174=0$
..then $a=1$

$$
\begin{aligned}
& (z-2)(2 z+3)(z-(2-5 i))(z-(2+5 i))=0 \\
& \left(2 z^{2}-z-6\right)\left(z^{2}-(2+5 i) z-(2-5 i) z+(2+5 i)(2-5 i)\right)=0 \\
& \left(2 z^{2}-z-6\right)\left(z^{2}-4 z+4-25 i^{2}\right)=0 \\
& \left(2 z^{2}-z-6\right)\left(z^{2}-4 z+29\right)=0
\end{aligned}
$$

$$
\begin{gathered}
2 z^{4}-9 z^{3}+p z^{2}+q z-174 \equiv\left(2 z^{2}-z-6\right)\left(z^{2}-4 z+29\right) \\
p=56
\end{gathered}
$$

$$
2 z^{4}-9 z^{3}+p z^{2}+q z-174 \equiv\left(2 z^{2}-z-6\right)\left(z^{2}-4 z+29\right)
$$

$$
q=-5
$$

