2-3i is a root to the equation $z^3-7z^2+az+b=0$, $a,b\in\ \mathbb{R}$

Work out ${\it a}$ and ${\it b}$ and the other roots of the equation.

Cinca this is a subis association and we have the	
Since this is a cubic equation and we know that it	
has a complex root, therefore we know	
it has 2 complex roots and 1 real root	
	If $z = 2 - 3i$ is a root to the polynomial
	Then $z = 2 + 3i$ is another root
	(z-2+3i) is a factor
	(z-2-3i) is a factor
Multiply these two together to find a quadratic factor	
(z-2+3i)(z-2-3i)	=z(z-2-3i)
	-2(z-2-3i)
	+3i(z-2-3i)
	$= z^2 - 2z - 3zi$
	-2z + 4 + 6i
	$+3zi-6i-9i^2$
	$=z^2-4z+13$
There must be 1 real factor. Call it $z - p$	
$(z-p)(z^2-4z+13)$	$=z^3-7z^2+az+b$
We can work out p, by considering how we get $-7z^2$	$z(-4z) - p(z^2) = \frac{-7z^2}{}$
	$-4z^2 - pz^2 = -7z^2$
	p = 3
We now know the 3 factors $(z-3)(z^2-4z+13)$	
$(z-3)(z^2-4z+13)$	$= z(z^2 - 4z + 13)$
	$-3(z^2-4z+13)$
	$= z^3 - 4z + 13z$
	$-3z^2 + 12z - 39$
	$= z^3 - 7z^2 + 25z - 39$
a = 25 , b = -39	
Roots are $z=3$, $2-3i$, $2+3i$	
1	1

