Seven students are placed at random in a line.
a. How many different arrangements are there?
b. What is the probability that the two youngest students are separated?
a. Find the number of arrangements of 7 objects

$$
\begin{aligned}
& =7! \\
& =5040
\end{aligned}
$$

b. Prob(two youngest students separated)
= 1 - Prob(two youngest students are together)

Let X_{1} and X_{2} be the youngest students
Let $O_{1}, O_{2}, O_{3}, O_{4}, O_{5}$ be the other students

Group X_{1} and X_{2} together as one object.

There are effectively 6 objects here.

$$
\begin{aligned}
& =6! \\
& =720
\end{aligned}
$$

The number of arrangement of 6 objects
BUT...
We could have X_{1} and X_{2} in a different order

There are 6! arrangements of this also

The total number of arrangements with two youngest students together $=2 \times 6$!

$$
=1440
$$

Probability(two youngest students separated) $==\frac{1440}{5040}$

$$
=\frac{2}{7}
$$

$$
\begin{aligned}
\text { Probability(two youngest students are together)=} & =1-\frac{2}{7} \\
& =\frac{5}{7}
\end{aligned}
$$

