Seven students are placed at random in a line.

- a. How many different arrangements are there?
- b. What is the probability that the two youngest students are separated?
- a. Find the number of arrangements of 7 objects

= 7! = 5040

- b. Prob(two youngest students separated)
 = 1 Prob(two youngest students are together)
- Let X_1 and X_2 be the youngest students

Let O_1, O_2, O_3, O_4, O_5 be the other students

Group X_1 and X_2 together as one object.

$X_1 X_2$	01	<i>O</i> ₂ <i>O</i> ₃	04	05	
There are effect	tively 6 ot	ojects here.			= 6!
The number of arrangement of 6 objects				= 720	
BUT					

We could have X_1 and X_2 in a different order

$X_2 X_1$	01	02	03	04	05
-----------	----	----	----	----	----

There are 6! arrangements of this also

The total number of arrangements with two youngest students together $= 2 \times 6!$ = 1440

<pre>Probability(two youngest students separated)=</pre>	1440
	$=\frac{5040}{2}$
	$=\frac{1}{7}$

Probability(two youngest students are together)=	- 1	2
	$=\frac{1}{5}$	7

