Counting Principles

Arrangements

The number of ways of arranging n unlike objects in a line

$$
\begin{aligned}
& =n! \\
& =n(n-1)(n-2) \ldots 3 \cdot 2 \cdot 1
\end{aligned}
$$

The number of ways of arranging n objects, when p are repeated

$$
=\frac{n!}{p!}
$$

The number of ways of arranging n objects, when p are repeated, q are repeated, r are repeated, ...

$$
=\frac{n!}{p!q!r!\ldots}
$$

Permutations

Order is important

The number of ways of choosing r items from objects n objects

$$
\begin{aligned}
& ={ }^{n} P_{r} \\
& =\frac{n!}{(n-r)!}
\end{aligned}
$$

Combinations

Order is NOT important

The number of ways of choosing r items from objects n objects

$$
\begin{aligned}
& ={ }^{{ }^{n} C_{r}=\binom{\mathrm{n}}{\mathrm{r}}} \\
& =\frac{n!}{(n-r)!r!}
\end{aligned}
$$

