a) Verify that ${ }^{3} C_{1}+{ }^{3} C_{2}={ }^{4} C_{2}$
b) Prove that ${ }^{n-1} C_{r-1}+{ }^{n-1} C_{r}={ }^{n} C_{r}$
a)

$$
\begin{aligned}
{ }^{3} C_{1}+{ }^{3} C_{2} & =3+3 \\
& =6 \\
{ }^{4} C_{2} & =6
\end{aligned}
$$

We can see that this is the $4^{\text {th }}$ row of Pascal's triangle

b) Prove that ${ }^{n-1} C_{r-1}+{ }^{n-1} C_{r}={ }^{n} C_{r}$

$$
\begin{aligned}
\text { LHS } & ={ }^{n-1} C_{r-1}+{ }^{n-1} C_{r} \\
& =\frac{(n-1)!}{[(n-1)-(r-1)]!(r-1)!}+\frac{(n-1)!}{(n-1-r)!r!} \\
& =\frac{(n-1)!}{(n-r)!(r-1)!}+\frac{(n-1)!}{(n-r-1)!r!}
\end{aligned}
$$

To be able to simplify these algebraic fractions, we need to make the denominators the same. We need to be able to manipulate the factorials in this expression

$$
\begin{aligned}
& r!=r \cdot(r-1)! \\
& \qquad \begin{aligned}
L H S & =\frac{r(n-1)!}{(n-r)!r(r-1)!}+\frac{(n-1)!}{(n-r-1)!r!} \\
& =\frac{r(n-1)!}{(n-r)!r!}+\frac{(n-1)!}{(n-r-1)!r!}
\end{aligned}
\end{aligned}
$$

$$
=\frac{r(n-1)!}{(n-r)!r!}+\frac{(n-1)!}{(n-r-1)!r!}
$$

Also,

$$
(n-r)!=(n-r)(n-r-1)!
$$

$$
\begin{aligned}
\text { LHS } & =\frac{r(n-1)!}{(n-r)!r!}+\frac{(n-r)(n-1)!}{(n-r)(n-r-1)!r!} \\
& =\frac{r(n-1)!}{(n-r)!r!}+\frac{(n-r)(n-1)!}{(n-r)!r!} \\
& =\frac{r(n-1)!+(n-r)(n-1)!}{(n-r)!r!} \\
& =\frac{r(n-1)!+n(n-1)!-r(n-1)!}{(n-r)!r!} \\
& =\frac{n(n-1)!}{(n-r)!r!}
\end{aligned}
$$

$$
n!=n(n-1)!
$$

$$
\begin{aligned}
L H S & =\frac{n!}{(n-r)!r!} \\
& ={ }^{n} C_{r} \\
& =R H S
\end{aligned}
$$

Notice that what we have proved is that, if you take any two consecutive terms from Pascal's triangle, then they add up to give the term below

