a) Verify that ${}^3C_1 + {}^3C_2 = {}^4C_2$ b) Prove that ${}^{n-1}C_{r-1} + {}^{n-1}C_r = {}^nC_r$

a)
$${}^{3}C_{1} + {}^{3}C_{2} = 3 + 3$$

= 6
 ${}^{4}C_{2} = 6$

We can see that this is the 4th row of Pascal's triangle

b) Prove that
$${}^{n-1}C_{r-1} + {}^{n-1}C_r = {}^nC_r$$

LHS =
$${}^{n-1}C_{r-1} + {}^{n-1}C_r$$

= $\frac{(n-1)!}{[(n-1)-(r-1)]!(r-1)!} + \frac{(n-1)!}{(n-1-r)!r!}$
= $\frac{(n-1)!}{(n-r)!(r-1)!} + \frac{(n-1)!}{(n-r-1)!r!}$

To be able to simplify these algebraic fractions, we need to make the denominators the same. We need to be able to manipulate the factorials in this expression

 $r! = r \cdot (r - 1)!$

$$LHS = \frac{r(n-1)!}{(n-r)!r(r-1)!} + \frac{(n-1)!}{(n-r-1)!r!}$$
$$= \frac{r(n-1)!}{(n-r)!r!} + \frac{(n-1)!}{(n-r-1)!r!}$$

© Richard Wade studyib.net

$$=\frac{r(n-1)!}{(n-r)!\,r!}+\frac{(n-1)!}{(n-r-1)!\,r!}$$

Also,

(n-r)! = (n-r)(n-r-1)!

$$LHS = \frac{r(n-1)!}{(n-r)!r!} + \frac{(n-r)(n-1)!}{(n-r)(n-r-1)!r!}$$
$$= \frac{r(n-1)!}{(n-r)!r!} + \frac{(n-r)(n-1)!}{(n-r)!r!}$$
$$= \frac{r(n-1)! + (n-r)(n-1)!}{(n-r)!r!}$$
$$= \frac{r(n-1)! + n(n-1)! - r(n-1)!}{(n-r)!r!}$$
$$= \frac{n(n-1)!}{(n-r)!r!}$$

$$n! = n(n-1)!$$

$$LHS = \frac{n!}{(n-r)!r!}$$
$$= {}^{n}C_{r}$$
$$= RHS$$

Notice that what we have proved is that, if you take any two consecutive terms from Pascal's triangle, then they add up to give the term below

