Deductive Proofs

In proof by deduction, you start at one point, make a series of steps, where each one follows directly from the previous one and the aim is to get to end point. Often a statement will give us a starting point for the proof.

Tips

- Start with one "side" and work towards the other "side"
- Do not start with what you are trying to prove
- Keep an eye on the thing that you are trying to prove
- Take risks - if one method doesn't work, try a different one
- Practise!

Useful points to remember for deductive proofs

三 means identically equal to
We can express an even number as $2 n$
We can express an odd number as $2 n-1$
If n is a number, then the next consecutive integer is $n+1$
If $2 n$ is an even number, the next consecutive even number is $2 n+2$

If $2 n-1$ is an odd number, the next consecutive odd number is $2 n+1$

A square number can be expressed as n^{2}
If you can take out a common factor, then that expression must be a multiple of that factor e.g. $3 x^{2}+6 x$ must be a multiple of 3 , since $3 x^{2}+6 x \equiv 3\left(x^{2}+2\right)$

If n is not prime, then $n=a \cdot b$, where $a, b \in \mathbb{Z}, 1<a, b<n$ (in words, this means that n must have (at least) two factors that are not 1 or n)

Make sure you know the sets of numbers
$\mathbb{N}=$ natural numbers $\{0,1,2, \ldots\}$
$\mathbb{Z}=$ integers $\{\ldots-2,-1,0,1,2, \ldots\}$
$\mathbb{Q}=$ rational numbers can be expressed as $\frac{a}{b}$ where $a, b \in \mathbb{Z}, b \neq 0$
$\overline{\mathbb{Q}}=$ irrational numbers (cannot be expressed as a rational number)
$\mathbb{R}=$ real numbers (contains all the sets above!)

