Solve the equation $3^{x-1}=\frac{2}{4^{x+1}}$, giving your answer in the from $x=\frac{\ln a}{\ln b}$, where a and b are rational numbers.

$$
3^{x-1}=\frac{2}{4^{x+1}}
$$

Take logs of both sides (In)

$$
\ln \left(3^{x-1}\right)=\ln \left(\frac{2}{4^{x+1}}\right)
$$

$$
\log \frac{a}{b}=\log a-\log b
$$

$$
\ln \left(3^{x-1}\right)=\ln 2-\ln \left(4^{x+1}\right)
$$

$\log a^{r}=\operatorname{rlog} a$

$$
(x-1) \ln 3=\ln 2-(x+1) \ln 4
$$

Multiply out the brackes

$$
x \ln 3-\ln 3=\ln 2-x \ln 4-1 \ln 4
$$

Rearrange the equation

$$
x \ln 3+x \ln 4=\ln 2-\ln 4+\ln 3
$$

Factorise

$$
\begin{aligned}
& x(\ln 3+\ln 4)=\ln \frac{6}{4} \\
& x(\ln 12)=\ln \frac{3}{2} \\
& x=\frac{\ln \frac{3}{2}}{\ln 12}
\end{aligned}
$$

