The first three terms of a geometric sequence are $\log _{3} x, \log _{9} x, \log _{81} x$ Find the value of x if the sum to infinity is 8 .

$$
\begin{gathered}
r=\frac{U_{2}}{U_{1}} \\
\quad \log _{3} x, \log _{9} x, \log _{81} x \\
r=\frac{\log _{9} x}{\log _{3} x}
\end{gathered}
$$

Changing to base 3 is useful:

$$
\begin{aligned}
& \log _{b} a=\frac{\log _{c} a}{\log _{c} b} \\
& r=\frac{\frac{\log _{3} x}{\log _{3} 9}}{\log _{3} x} \\
& r=\frac{\frac{\log _{3} x}{2}}{\log _{3} x} \\
& r=\frac{1}{2}
\end{aligned}
$$

$$
\text { Sum to infinity }=8
$$

$$
S_{\infty}=\frac{U_{1}}{1-r}
$$

$$
8=\frac{U_{1}}{1-\frac{1}{2}}
$$

$$
8=\frac{U_{1}}{\frac{1}{2}}
$$

$$
4=U_{1}
$$

First term of sequence is $\log _{3} x$

$$
\begin{aligned}
U_{1}=\log _{3} x & \\
& \begin{array}{l}
\log _{3} x=4 \\
\\
\\
\\
\\
\\
\\
x=3^{4}=81
\end{array}
\end{aligned}
$$

Check with sequence
$\log _{3} x, \log _{9} x, \log _{81} x, \ldots$
$\log _{3} 81, \log _{9} 81, \log _{81} 81, \ldots$
$4,2,1, \ldots$

