$$
\begin{array}{cl}
\log _{a} b=x \Leftrightarrow a^{x}=b \\
m^{x} \times m^{y}=m^{x+y} & \log _{c} \mathrm{ab}=\log _{c} \mathrm{a}+\log _{c} \mathrm{~b} \\
m^{x} \div m^{y}=m^{x-y} & \log _{c} \frac{a}{b}=\log _{c} a-\log _{c} b \\
\left(m^{x}\right)^{y}=m^{x \times y} & \log _{c} a^{r}=\operatorname{rlog}_{c} a
\end{array}
$$

1. Show that the equation $\log _{2}(x+2)+\log _{2}(x+3)=1$ has only one solution and state its value
2. Make x the subject of the following formula $2+\log _{5} x=3 \log _{5} y$
3.

$\log _{2}(x+2)+\log _{2}(x+3)=1$
$\log _{\mathrm{c}} \mathrm{a}+\log _{\mathrm{c}} \mathrm{b}=\log _{c} \mathrm{ab}$
$\log _{2}(x+2)(x+3)=1$
$\log _{a} b=x \Leftrightarrow a^{x}=b$
$(x+2)(x+3)=2^{1}$
$x^{2}+5 x+6=2$
$x^{2}+5 x+4=0$
$(x+4)(x+1)=0$
$x=-4, x=-1$
$x=-4 \log _{2}(-4+2)+\log _{2}(-4+3)$
$\log _{2}(-2)+\log _{2}(-1)$
Consider $\log _{2}(-2)=x \Leftrightarrow 2^{x}=-2$

$$
\begin{aligned}
x=-1 & \log _{2}(-1+2)+\log _{2}(-1+3) \\
& \log _{2}(1)+\log _{2}(2) \\
& 0+1
\end{aligned}
$$

1

Solution is $x=-1$
2. Make x the subject of the formula

$$
\begin{gathered}
2+\log _{5} x=3 \log _{5} y \\
\log _{a} b=3 \log _{5} y-2
\end{gathered} a^{\log _{5} b=x \Leftrightarrow a^{x}=b} \begin{aligned}
& \log _{5} x=3 \log _{5} y-\log _{5} 5^{2} \\
& \log _{5} x=3 \log _{5} y-\log _{5} 25
\end{aligned} \log _{c} a^{r}=r \log _{c} a \begin{aligned}
& a \\
& \log _{5} x=\log _{5} y^{3}-\log _{5} 25 \\
& \log _{c} \frac{a}{b}=\log _{c} a-\log _{c} b \\
& \log _{5} x=\log _{5}\left(\frac{y^{3}}{25}\right) \\
& x=\frac{y^{3}}{25}
\end{aligned}
$$

