Exponents and Logarithms

Logarithms are useful for solving problems that involve exponents (or indices). In fact logarithms are exponents just written in a different way. Whenever you see a logarithm, you should remind yourself of what it means:

$$
\log _{a} b=x \Leftrightarrow a^{x}=b
$$

There are two special bases:
Base 10: $\log _{10} b$ which can be written $\log b$
Base e: $\log _{e} b$ which can be written $\ln b$
Your calculator will have a button for those bases, but you should be able to enter logarithms to any base:

$\log 100$
$\ln e^{3}$
$\mid \log _{2}(16)$

UATVCT Logan Abs $d / d x d d / d x^{2}$

Don't be too reliant on your calculator, as questions will often come up on the noncalculator paper. You should, therefore, know how to change the base of a logarithm. The following formula is useful for this:

$$
\log _{b} a=\frac{\log _{c} a}{\log _{c} b}
$$

Since logarithms are just exponents written in a different way, all the rules of exponents have their equivalent rules for logarithms:

$m^{x} \times m^{y}=m^{x+y}$	$\log _{c} \mathrm{ab}=\log _{c} \mathrm{a}+\log _{\mathrm{c}} \mathrm{b}$
$m^{x} \div m^{y}=m^{x-y}$	$\log _{c} \frac{a}{b}=\log _{c} a-\log _{c} b$
$\left(m^{x}\right)^{y}=m^{x \times y}$	$\log _{c} a^{r}=r \log _{c} a$

