Solve $\log _{4} \frac{\cos x}{3}+\log _{4} \cos x=-1$, for $-\pi<x<\pi$

$$
\log _{4} \frac{\cos x}{3}+\log _{4} \cos x=-1
$$

$\log a+\log b=\log a b$

$$
\log _{4} \frac{\cos x \times \cos x}{3}=-1
$$

$$
\log _{4} \frac{\cos ^{2} x}{3}=-1
$$

$$
x=\log _{a} b \Leftrightarrow a^{x}=b
$$

$$
\begin{aligned}
& \frac{\cos ^{2} x}{3}=4^{-1} \\
& \frac{\cos ^{2} x}{3}=\frac{1}{4} \\
& \cos ^{2} x=\frac{3}{4} \\
& \cos x= \pm \sqrt{\frac{3}{4}}
\end{aligned}
$$

Only positive root as

$$
\log _{4} \frac{-\frac{\sqrt{3}}{2}}{3}+\log _{4}-\frac{\sqrt{3}}{2}=\text { non real }
$$

Solve $\cos x=\frac{\sqrt{3}}{2},-\pi<x<\pi$

$$
x=-\frac{\pi}{6}, \frac{\pi}{6}
$$

