Prove by contradiction that, if n^{2} is even, then n is even

Assume that n is odd $n=2 k+1$

$$
\begin{aligned}
& n^{2}=(2 k+1)^{2} \\
& n^{2}=4 k^{2}+4 k+1 \\
& n^{2}=2\left(2 k^{2}+2 k\right)+1
\end{aligned}
$$

This is an odd number
This is a contradiction, since n^{2} is an even number
Therefore if n^{2} is even, then n is even

