a) Use a deductive proof to prove that even \times even $=$ even
b) Similarly prove that odd \times odd $=$ odd
c) Hence, use proof by contradiction to prove that $\log _{2} 5$ is irrational
a) Let a be an even number, then

$$
a=2 m
$$

Let b be an even number, then

$$
\begin{gathered}
b=2 n \\
\text { even } \times \text { even }=\quad a \times b=2 m \times 2 n=2(2 m n)
\end{gathered}
$$

Which is divisible by 2 , hence even
b) Let c be an odd number, then

$$
c=2 m+1
$$

Let d be an even number, then

$$
\begin{aligned}
& d=2 n+1 \\
o d d \times o d d= & c \times d=(2 m+1) \times(2 n+1) \\
& =4 m n+2 m+2 n+1 \\
& =2(2 m n+m+n)+1
\end{aligned}
$$

Which is odd
c) If $\log _{2} 5$ is irrational, then it cannot be written as a fraction

Assume that $\log _{2} 5$ is rational

$$
\begin{aligned}
& \log _{2} 5=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0 \\
& 5=2^{\frac{a}{b}} \\
& 5^{b}=\left(2^{\frac{a}{b}}\right)^{b} \\
& 5^{b}=2^{a}
\end{aligned}
$$

From b) 5^{b} is always odd for any integer b

This is a contradiction, since

$$
\text { odd } \neq \text { even }
$$

Therefore, $\log _{2} 5$ is irrational

