Prove by contradiction that a rational number + an irrational number = irrational number.

Remember the definition of a rational and irrational numbers

- Rational numbers can be expressed as fractions.
- Irrational numbers cannot be expressed as fractions.

We can re-write the statement:
If a is a rational number and b is an irrational number, then $a+b$ is an irrational number

If a is a rational number then

$$
a=\frac{m}{n}, m, n \in \mathbb{Z}
$$

Assume that the opposite is true, that is, that $a+b$ is a rational number
If $a+b$ is a rational number then

$$
a+b=\frac{p}{q}, p, q \in \mathbb{Z}
$$

Write out the given statement

$$
\frac{m}{n}+b=\frac{p}{q}
$$

Rearrange to make b

$$
\begin{aligned}
& b=\frac{p}{q}-\frac{m}{n} \\
& b=\frac{n p-m q}{q n} \\
& n p-m q \text { is an integer } \\
& q n \text { is an integer } \\
& \text { Therefore, } \frac{n p-m q}{q n} \text { is a rational number } \\
& \text { That is } b \text { is a rational number }
\end{aligned}
$$

This is a contradiction. We know that b is an irrational number.

Therefore, a rational number + an irrational number $=$ irrational number

