$$
\text { Let } r=\sqrt{3}
$$

Assume that the opposite is true
Assume that $r$ is rational
$r$ can be written as a fraction in its lowest terms
$r=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$
... $a$ and $b$ are coprime
...there is no common factor of $a$ and $b$ other than 1
$r^{2}=\frac{a^{2}}{b^{2}}=3$
$a^{2}=3 b^{2}$
$3 b^{2}$ is divisible by 3
$a^{2}$ is divisible by 3
Using the Fundamental Theorem of
Arithmetic and since 3 is prime:
$a$ is divisible by 3
$a=3 n$
$a^{2}=3 b^{2}$
$(3 n)^{2}=3 b^{2}$
$9 n^{2}=3 b^{2}$
$3 n^{2}=b^{2}$
$b^{2}$ is divisible by 3
$b$ is divisible by 3

If $a$ and $b$ are both divisible by 3 , then $\frac{a}{b}$ has a common factor of 3
$a$ and $b$ are NOT coprime
This is a contradiction
$\sqrt{3}$ is not rational. We have proved that $\sqrt{3}$ is irrational.

