Let $r = \sqrt{3}$

Assume that the opposite is true

Assume that r is rational

$$r = \frac{a}{b}$$
, $a, b \in \mathbb{Z}, b \neq 0$

r is a fraction in its lowest terms

$$r^2 = \frac{a^2}{b^2} = 3$$

$$a^2 = 3b^2$$

Consider that b^2 is even, then $3b^2$ is even, so a^2 is even

Therefore, a and b must be even

If *a* and *b* are both even, then $\frac{a}{b}$ can be simplified by dividing through by a common factor of 2.

This is a contradiction

We need to consider two cases

- **1)** where b² is odd
- **2)** where b^2 is even

Consider that b^2 is odd, then $3b^2$ is odd, so a^2 is odd

Therefore, a and b must be odd

Let a = 2m - 1Let b = 2n - 1

Therefore

 $a^2 = 3b^2$

 $(2m-1)^2 = 3(2n-1)^2$

© Richard Wade studyib.net

 $4m^{2} - 4m + 1 = 3(4n^{2} - 4n + 1)$ $4m^{2} - 4m + 1 = 12n^{2} - 12n + 3$ $4m^{2} - 4m = 12n^{2} - 12n + 2$ $2m^{2} - 2m = 6n^{2} - 6n + 1$ $2(m^{2} - m) = 2(3n^{2} - 3n) + 1$

Notice that the LHS is even and the RHS is odd

This is a contradiction. $\sqrt{3}$ is not rational. We have proved that $\sqrt{3}$ is irrational.

© Richard Wade studyib.net