$$
\text { Let } r=\sqrt{3}
$$

Assume that the opposite is true
Assume that r is rational
$r=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$
r is a fraction in its lowest terms
$r^{2}=\frac{a^{2}}{b^{2}}=3$
$a^{2}=3 b^{2}$
Consider that b^{2} is even, then $3 b^{2}$ is even, so a^{2} is even

Therefore, a and b must be even
If a and b are both even, then $\frac{a}{b}$ can be simplified by dividing through by a common factor of 2 .

This is a contradiction

We need to consider two cases

1) where b^{2} is odd
2) where b^{2} is even

Consider that b^{2} is odd, then $3 b^{2}$ is odd, so a^{2} is odd

Therefore, a and b must be odd

Let $a=2 m-1$

$$
\text { Let } b=2 n-1
$$

Therefore

$$
\begin{gathered}
a^{2}=3 b^{2} \\
(2 m-1)^{2}=3(2 n-1)^{2}
\end{gathered}
$$

$$
\begin{gathered}
4 m^{2}-4 m+1=3\left(4 n^{2}-4 n+1\right) \\
4 m^{2}-4 m+1=12 n^{2}-12 n+3 \\
4 m^{2}-4 m=12 n^{2}-12 n+2 \\
2 m^{2}-2 m=6 n^{2}-6 n+1 \\
2\left(m^{2}-m\right)=2\left(3 n^{2}-3 n\right)+1
\end{gathered}
$$

Notice that the $L H S$ is even and the $R H S$ is odd
This is a contradiction. $\sqrt{3}$ is not rational. We have proved that $\sqrt{3}$ is irrational.

