Let
$$r = \sqrt[3]{5}$$

Assume that the opposite is true

Assume that r is rational

r can be written as a fraction in its lowest terms

$$r = \frac{a}{b}$$
, $a, b \in \mathbb{Z}$, $b \neq 0$

...a and b are coprime

...there is ${\bf no}$ common factor of a and b other than 1

$$r^3 = \frac{a^3}{b^3} = 5$$

$$a^3 = 5b^3$$

 $5b^3$ is divisible by 5

 a^3 is divisible by 5

Using the Fundamental Theorem of Arithmetic and since 5 is prime:

a is divisible by 5

$$a = 5n$$

$$a^3 = 5b^3$$

$$(5n)^3 = 5b^3$$

$$125n^3 = 5b^3$$

$$25n^3 = b^3$$

 b^3 is divisible by 5

b is divisible by 5

If a and b are both divisible by 5, then $\frac{a}{b}$ has a common factor of 5

 \boldsymbol{a} and \boldsymbol{b} are NOT coprime

This is a contradiction

 $\sqrt[3]{5}$ is not rational. We have proved that $\sqrt[3]{5}$ is irrational.

