$$
\text { Let } r=\sqrt[3]{5}
$$

Assume that the opposite is true
Assume that r is rational
r can be written as a fraction in its lowest terms
$r=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$
... a and b are coprime
...there is no common factor of a and b other than 1
$r^{3}=\frac{a^{3}}{b^{3}}=5$
$a^{3}=5 b^{3}$
$5 b^{3}$ is divisible by 5
a^{3} is divisible by 5
Using the Fundamental Theorem of
Arithmetic and since 5 is prime:
a is divisible by 5
$a=5 n$
$a^{3}=5 b^{3}$
$(5 n)^{3}=5 b^{3}$
$125 n^{3}=5 b^{3}$
$25 n^{3}=b^{3}$
b^{3} is divisible by 5
b is divisible by 5

If a and b are both divisible by 5 , then $\frac{a}{b}$ has a common factor of 5
a and b are NOT coprime
This is a contradiction
$\sqrt[3]{5}$ is not rational. We have proved that $\sqrt[3]{5}$ is irrational.

