Prove that $\sqrt[n]{p}$ is irrational, given that p is prime

$$
\text { Let } r=\sqrt[n]{p}
$$

Assume that the opposite is true

Assume that r is rational
r can be written as a fraction in its lowest terms
$r=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$
... a and b are coprime
...there is no common factor of a and b other than 1
$r^{n}=\frac{a^{n}}{b^{n}}=p$
$a^{n}=p b^{n}$
$p b^{n}$ is divisible by p
a^{n} is divisible by p
Using the Fundamental Theorem of
Arithmetic and since 5 is prime:
a is divisible by p
$a=p n$
$a^{n}=p b^{n}$
$(p n)^{n}=p b^{n}$
$p^{n} n^{n}=p b^{n}$
$p^{n-1} n^{n}=b^{n}$
b^{n} is divisible by p
b is divisible by p

If a and b are both divisible by p , then $\frac{a}{b}$ has a common factor of p a and b are NOT coprime This is a contradiction
$\sqrt[n]{p}$ is not rational. We have proved that $\sqrt[n]{p}$ is irrational.

