Prove by contradiction that the length of the hypotenuse of a right-angled triangle is less than the sum of the other two sides.

Let c be the length of the hypotenuse
...and a and b be the lengths of the other two sides

$$
\text { We need to prove that } \mathrm{c}<\mathrm{a}+\mathrm{b}
$$

Assume the opposite

$$
c \geq a+b
$$

Square both sides

$$
\begin{aligned}
& \mathrm{c}^{2} \geq(\mathrm{a}+\mathrm{b})^{2} \\
& \mathrm{c}^{2} \geq \mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}
\end{aligned}
$$

If this is a right-angled triangle, then $c^{2}=a^{2}+b^{2}$

$$
\begin{aligned}
& c^{2} \geq c^{2}+2 a b \\
& 0 \geq 2 \mathrm{ab} \\
& \mathrm{ab} \leq 0
\end{aligned}
$$

Since a and b are lengths, then they are positive.
This is a contradiction

Therefore, $\mathrm{c}<\mathrm{a}+\mathrm{b}$

We have proved that the length of the hypotenuse of a right-angled triangle is less than the sum of the other two sides.

