Assume the opposite...

Assume that the roots, x are rational

$$x = \frac{b}{a}$$
, a, $b \in \mathbb{Z}$, $b \neq 0$

Since, x is in its simplest form, a and b are coprime

$$\left(\frac{b}{a}\right)^3 + \left(\frac{b}{a}\right) + 1 = 0$$
$$\frac{b^3}{a^3} + \frac{b}{a} + 1 = 0$$
$$b^3 + a^2b + a^3 = 0$$

Let's consider all 4 possible cases for a and b

- 1) a and b are even
- 2) a and b are odd
- 3) a is odd and b is even
- 4) a is even and b is odd

1) a and b are even	This is not possible, since a and b are coprime
2) a and b are odd	$b^3 + a^2b + a^3 = odd + odd + odd = odd$
	This is not possible, since 0 is not odd
3) a is odd and b is even	$b^3 + a^2b + a^3 = even + even + odd = odd$
	This is not possible, since 0 is not odd
5) a is even and b is odd	$b^3 + a^2b + a^3 = odd + odd + even = odd$
	This is not possible, since 0 is not odd

Hence, there is a contradiction

We have proved that there are no rational roots to the equation $x^3 + x + 1 = 0$

