Prove by contradiction that there are no rational roots to the equation $x^{3}+x+1=0$

Assume the opposite...
Assume that the roots, x are rational
$x=\frac{\mathrm{b}}{\mathrm{a}}, \mathrm{a}, \mathrm{b} \in \mathbb{Z}, \mathrm{b} \neq 0$
Since, x is in its simplest form, a and b are coprime
$\left(\frac{b}{a}\right)^{3}+\left(\frac{b}{a}\right)+1=0$
$\frac{b^{3}}{a^{3}}+\frac{b}{a}+1=0$
$b^{3}+a^{2} b+a^{3}=0$

Let's consider all 4 possible cases for a and b

1) a and b are even
2) a and b are odd
3) a is odd and b is even
4) a is even and b is odd
5) a and b are even This is not possible, since a and b are coprime
6) a and b are odd $b^{3}+a^{2} b+a^{3}=o d d+o d d+o d d=o d d$

This is not possible, since 0 is not odd
3) a is odd and b is even $b^{3}+a^{2} b+a^{3}=e v e n+e v e n+o d d=o d d$

This is not possible, since 0 is not odd
5) a is even and b is odd
$\mathrm{b}^{3}+\mathrm{a}^{2} b+\mathrm{a}^{3}=$ odd + odd + even $=$ odd This is not possible, since 0 is not odd

Hence, there is a contradiction
We have proved that there are no rational roots to the equation $x^{3}+x+1=0$

