Prove by Induction that $12^{n}+2 \times 5^{n-1}$ is divisible by 7 for $n \in \mathbb{Z}^{+}$

Let $\mathrm{P}(\mathrm{n})$ be the proposition that $12^{n}+2 \times 5^{n-1}$ is divisible by 7 for $n \in \mathbb{Z}^{+}$

$$
\begin{aligned}
& \text { Show true for } n=1 \\
& \qquad \begin{array}{l}
12^{1}+2 \times 5^{1-1}=12+2 \times 1=14 \\
\\
14=7 \times 2 \\
\\
14 \text { is divisble by } 7
\end{array}
\end{aligned}
$$

Hence true for $n=1$

Assume true for $n=k$
Assume that $12^{k}+2 \times 5^{k-1}$ is divisble by 7
$12^{k}+2 \times 5^{k-1} \equiv 7 m, m \in \mathbb{Z}$
$12^{k} \equiv 7 m-2 \times 5^{k-1}$
Show true for $n=k+1$
Show that $12^{k+1}+2 \times 5^{k}$ is divisble by 7 $12^{k+1}+2 \times 5^{k} \equiv 12 \times 12^{k}+2 \times 5^{k}$
$\equiv 12\left(7 m-2 \times 5^{k-1}\right)+2 \times 5^{k}$
$\equiv 84 m-24 \times 5^{k-1}+2 \times 5^{k}$
$\equiv 84 m-24 \times 5^{k-1}+2 \times 5 \times 5^{k-1}$
$\equiv 84 m-24 \times 5^{k-1}+10 \times 5^{k-1}$
$\equiv 84 m-14 \times 5^{k-1}$
$\equiv 7\left(12 m-2 \times 5^{k-1}\right)$
$7\left(12 m-2 \times 5^{k-1}\right)$ is divisible by 7 provided that $k \in \mathbb{Z}, k \geq 1$ Hence true for $n=k+1$

Concluding statement

True for $n=1$
Assuming it is true for $n=k$ then it is true
for $n=k+1$
Therefore it is true for all $n \in \mathbb{Z}^{+}$

