Prove by Induction that $12^n + 2 \times 5^{n-1}$ is divisible by 7 for $n \in \mathbb{Z}^+$

Let P(n) be the proposition that $12^n + 2 \times 5^{n-1}$ is divisible by 7 for $n \in \mathbb{Z}^+$

Show true for n = 1

$$12^{1} + 2 \times 5^{1-1} = 12 + 2 \times 1 = 14$$

14 = 7 × 2
14 is divisble by 7

Hence true for n = 1

Assume true for n = k

Assume that $12^k + 2 \times 5^{k-1}$ is divisble by 7 $12^k + 2 \times 5^{k-1} \equiv 7m$, $m \in \mathbb{Z}$ $12^k \equiv 7m - 2 \times 5^{k-1}$

Show true for n = k + 1

Show that
$$12^{k+1} + 2 \times 5^k$$
 is divisble by 7
 $12^{k+1} + 2 \times 5^k \equiv 12 \times 12^k + 2 \times 5^k$
 $\equiv 12(7m - 2 \times 5^{k-1}) + 2 \times 5^k$
 $\equiv 84m - 24 \times 5^{k-1} + 2 \times 5^k$
 $\equiv 84m - 24 \times 5^{k-1} + 2 \times 5 \times 5^{k-1}$
 $\equiv 84m - 24 \times 5^{k-1} + 10 \times 5^{k-1}$
 $\equiv 84m - 14 \times 5^{k-1}$
 $\equiv 7(12m - 2 \times 5^{k-1})$

 $7(12m - 2 \times 5^{k-1})$ is divisible by 7 provided that $k \in \mathbb{Z}$, $k \ge 1$ Hence true for n = k + 1

Concluding statement

True for n = 1Assuming it is true for n = k then it is true for n = k + 1Therefore it is true for all $n \in \mathbb{Z}^+$