Proof by Induction

Prove that $n^{3}+11 n$ is divisible by 3 for $n \in \mathbb{Z}, n>0$

Show true for $\mathrm{n}=1$

$$
\begin{aligned}
& 1^{3}+11 \times 1=12 \\
& 12=3 \times 4
\end{aligned}
$$

Assume true for $n=k$
Assume $k^{3}+11 k$ is divisible by 3

$$
k^{3}+11 k=3 m \quad m \in \mathbb{Z}
$$

Show true for $n=k+1$

Show $(k+1)^{3}+11(k+1)$ is divisible by 3

$$
\begin{aligned}
(k+1)^{3}+11(k+1) & \equiv k^{3}+3 k^{2}+3 k+1+11 k+11 \\
& \equiv k^{3}+11 k+3 k^{2}+3 k+12 \\
& \equiv 3 m+3\left(k^{2}+k+4\right)
\end{aligned}
$$

Concluding statement

True for $\mathrm{n}=1$
Assuming it is true for $\mathrm{n}=\mathrm{k}$ then it is true for $\mathrm{n}=\mathrm{k}+1$
Therefore it is true for all $n \in \mathbb{Z}, n>0$

