Proof by Induction – Inequalities

Prove $n! > 2^n$ for $n \ge 4$

1) Set up the proposition Let P(n) be the proposition $n! > 2^n$ for $n \ge 4$ 2) Show true for starting value RHS = 2^4 = 16 For n=4 :LHS = 4! = $4 \times 3 \times 2 \times 1$ = 24 3) Assume true for n = k Assume $k! > 2^k$ is true for $k \ge 4$ 4) Prove true for n = k+1 Prove $(k+1)! > 2^{k+1}$ is true for $k \ge 4$ LHS $\equiv (k+1)k!$ LHS > $(k+1)2^k$ LHS > $(2)2^{k}$ LHS > 2^{k+1} LHS > RHS 5) Write conclusion P(4) is true If P(k) is true then P(k + 1) is true Hence P(n) is true for $n \ge 4$