Proof by Induction - Inequalities

Prove $n!>2^{n}$ for $n \geq 4$

1) Set up the proposition

Study (1B
© Richard Wade
2) Show true for starting value

$$
\begin{aligned}
\text { For } n=4: \text { LHS } & =4! & \text { RHS } & =2^{4} \\
& =4 \times 3 \times 2 \times 1 & & =16 \\
& =24 & &
\end{aligned}
$$

3) Assume true for $n=k$

Assume $k!>2^{k}$ is true for $k \geq 4$
4) Prove true for $n=k+1$

Prove $(k+1)!>2^{k+1}$ is true for $k \geq 4$
LHS $\equiv(k+1) k!$
LHS $>(k+1) 2^{k}$
LHS $>(2) 2^{k}$
LHS $>2^{k+1}$
LHS > RHS
5) Write conclusion
$P(4)$ is true
If $P(k)$ is true then $P(k+1)$ is true
Hence $P(n)$ is true for $n \geq 4$

