The 2nd term of an arithmetic sequence is 19 and the 5th term is 37.

a) Find the 10th term

b) The sum of the first *n* terms of this sequence exceeds 1000. Find the least value of *n*

2nd term is 19
5th term is 37

$$U_1, 19, U_3, U_4, 37, ...$$

There are 3 differences from 2nd to 5th term
 $37 = 19 + 3d$
 $18 = 3d$
 $6 = d$
 $U_1 = 13$
 $U_{10} = U_1 + 9d$
 $U_{10} = 13 + 9 \times 6$
 $U_{10} = 13 + 54$
 $U_{10} = 67$
b) sum of the first *n* terms

$$S_n = \frac{n}{2}(2U_1 + (n-1)d)$$

$$S_n = \frac{n}{2}(2 \times 13 + (n-1) \times 6)$$

$$S_n = \frac{n}{2}(26 + 6n - 6)$$

$$S_n = \frac{n}{2}(20 + 6n)$$

$$S_n = 10n + 3n^2$$

$$S_n = \frac{n}{2}(2U_1 + (n-1)d)$$

$$S_n = \frac{n}{2}(2 \times 13 + (n-1) \times 6)$$

$$S_n = \frac{n}{2}(26 + 6n - 6)$$

$$S_n = \frac{n}{2}(20 + 6n)$$

$$S_n = 10n + 3n^2$$

sum of the first *n* terms of this sequence exceeds 1000

 $10n + 3n^2 > 1000$

Our graphical calculator can help

ESQ Page 1

n = 17

$$S_{16} = 928$$

 $S_{17} = 1037$

We can also use the table function

$\frac{1}{Y^2 = 10x + 3x^2}$			
	X	¥2	
	14	728	
	15	825	
	16	928	
	17	1037	
<u>1037</u>			
FORMULA DELETE ROW EDIT GPH-CON GPH-PLT			