Find the sum of all the integers between 100 and 1000 that are divisible by 9

The first integer after 100 divisible by $9=108$
$U_{1}=108$
$U_{n}=999$
The common difference $=9$
How many terms in the sequence?
$U_{n}=U_{1}+(n-1) d$
$999=108+9(n-1)$
$891=9(n-1)$
$99=n-1$
$n=100$
Find the sum to 100 terms

How many terms in the seque?

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left(2 U_{1}+(n-1) d\right) \\
& S_{n}=\frac{100}{2}(2 \times 108+99 \times 9) \\
& S_{n}=\frac{100}{2}(2 \times 108+99 \times 9) \\
& S_{n}=55350
\end{aligned}
$$

