An arithmetic sequence has first term \boldsymbol{U}_{1} and common difference \boldsymbol{d}. The sum of the first 17 terms is 136 .
a) Show that $U_{1}+8 d=8$

The sum of the 2 nd and the 3 rd terms is 42 .
b) Find d.

The nth term of the sequence is \boldsymbol{U}_{n}.
c) Find the value of $\sum_{4}^{17} U_{n}$
a)
$S_{n}=\frac{n}{2}\left(2 U_{1}+(n-1) d\right)$
$136=\frac{17}{2}\left(2 U_{1}+(17-1) d\right)$
$136=\frac{17}{2}\left(2 U_{1}+16 d\right)$
$136=17\left(U_{1}+8 d\right)$
$\frac{136}{17}=U_{1}+8 d$
$8=U_{1}+8 d$
b)

$$
\begin{aligned}
U_{2}+U_{3} & =42 \\
U_{1}+d+U_{1}+2 d & =42 \\
2 U_{1}+3 d & =42
\end{aligned}
$$

The sum of the 2 nd and the 3 rd terms is 42 .

Solve the simultaneous equations
$U_{1}+8 d=8$
$2 U_{1}+3 d=42$
Eliminate U_{1}

$$
\begin{aligned}
2 U_{1}+16 d & =16 \\
2 U_{1}+3 d & =42 \\
13 d & =-26 \\
d & =-2
\end{aligned}
$$

c) Find the value of

$$
\sum_{4}^{17} U_{n}
$$

This is
sum of the first 17 terms - sum of the first 3 terms
$\sum_{1}^{17} U_{n}=136$
$\sum_{1}^{3} U_{n}=U_{1}+U_{2}+U_{3}$
Sum of first 3 terms $=U_{1}+42$
Sum of first 3 terms $=U_{1}+U_{2}+U_{3}$
The sum of the 2 nd and the 3 rd terms is 42 .

Find U_{1}
$8=U_{1}+8 d$
$8=U_{1}+8(-2)$
$24=U_{1}$
Sum of first 3 terms $=24+42=66$
$\sum_{4}^{17} U_{n}=136-66=\mathbf{7 0}$

