The first terms of a sequence are $\log _{3} x, \log _{3} x^{2}, \log _{3} x^{3}, \ldots$
Find \boldsymbol{x} if the sum of the first 9 terms is 135

$$
\log _{3} x, \log _{3} x^{2}, \log _{3} x^{2}, \ldots
$$

The terms in this sequence are arithmetic Consider the first two terms

$$
d=\log _{3} x^{2}-\log _{3} x
$$

Use log laws to simplify:
$\log _{c} a-\log _{c} b=\log _{c} \frac{a}{b}$
$d=\log _{3} \frac{x^{2}}{x}=\log _{3} x$
Check with 2nd and 3rd terms
$\mathrm{d}=\log _{3} x^{3}-\log _{3} x^{2}=\log _{3} \frac{x^{3}}{x^{2}}=\log _{3} x$
Common difference $=\log _{3} x$
We are told that the sum of the first 9 terms is 135
We know
$d=\log _{3} x$
$U_{1}=\log _{3} x$
$S_{n}=\frac{n}{2}\left(2 U_{1}+(n-1) d\right)$
$135=\frac{9}{2}\left(2 \log _{3} x+(9-1) \log _{3} x\right)$
$135=\frac{9}{2}\left(2 \log _{3} x+8 \log _{3} x\right)$
$135=\frac{9}{2}\left(10 \log _{3} x\right)$
$135=45 \log _{3} x$
$\frac{135}{45}=\log _{3} x$
$3=\log _{3} x$
$x=3^{3}$
$x=27$
Substitute value back into the question to check...
$\log _{3} x, \log _{3} x^{2}, \log _{3} x^{2}, \ldots$
$\log _{3} 27, \log _{3} 27^{2}, \log _{3} 27^{3}, \ldots$
3, 6,9,...
$3+6+9+\ldots+27=135$

