The first term of a geometric series is 10 . The sum to infinity is 50 .
a) Find the common ratio

The nth term is U_{n}
b) Find the value of $\sum_{1}^{20} U_{n}$
a)

$$
\begin{aligned}
& U_{1}=10 \\
& S_{\infty}=50
\end{aligned}
$$

$S_{\infty}=\frac{U_{1}}{1-r}$
$50=\frac{10}{1-r}$
$50(1-r)=10$
$1-r=\frac{10}{50}$
$1-r=\frac{1}{5}$
$1-\frac{1}{5}=r$
$r=\frac{4}{5}$
b)
$U_{n}=10\left(\frac{4}{5}\right)^{n-1}$
$\sum_{1}^{20} 10\left(\frac{4}{5}\right)^{n-1}$
We can use our calculators to work this out

$\sum_{x=1}^{20}\left(10 \times\left(\frac{4}{5}\right)^{x-1}\right)$	
$\sum_{x=1} 49.42353925$	
\square	
FVin EMax ${ }^{\text {L }}$ (logab	\square

$\sum_{1}^{20} U_{n}=49.4$
We can also use the formula

$$
\begin{aligned}
& S_{n}=\frac{U_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{20}=\frac{10\left(1-\left(\frac{4}{5}\right)^{20}\right)}{1-\frac{4}{5}} \\
& S_{20}=\frac{10\left(1-\left(\frac{4}{5}\right)^{20}\right)}{\frac{1}{5}}
\end{aligned}
$$

自 Math Rad |Norm1 [d/c|a+bi]
$\frac{10\left(1-\left(\frac{4}{5}\right)^{20}\right)}{\frac{1}{5}}$

JUMP DELETE RMATVCI MATH

$$
\sum_{1}^{20} U_{n}=49.4
$$

