Consider the geometric sequence where the first term is 45 and the second term is 36 .
a) Find the least value of \boldsymbol{n} such that the nth term of the sequence is less than 1
b) Find the least value of \boldsymbol{n} such that the sum of the first \boldsymbol{n} terms of the sequence is more than 200.
c) Find the sum to infinity.
a)
$U_{1}=45$
$U_{2}=36$
$r=\frac{U_{2}}{U_{1}}$
$r=\frac{36}{45}$
$r=\frac{4}{5}$
$U_{n}=U_{1} r^{n-1}$
$U_{n}=45\left(\frac{4}{5}\right)^{n-1}$

Find the least value of \boldsymbol{n} such that the nth term of the sequence is less than 1

$$
45\left(\frac{4}{5}\right)^{n-1}<1
$$

We can use the table function to solve this

$n=19$

$$
\begin{aligned}
& U_{18}=1.01 \\
& U_{19}=0.811
\end{aligned}
$$

Or we can solve using a graph

$n=19$

Or we can solve using logs
Solve
$45\left(\frac{4}{5}\right)^{n-1}=1$
$\left(\frac{4}{5}\right)^{n-1}=\frac{1}{45}$
$\ln \left(\frac{4}{5}\right)^{n-1}=\ln \frac{1}{45}$
$(n-1) \ln \left(\frac{4}{5}\right)=\ln \frac{1}{45}$
$n-1=\frac{\ln \frac{1}{45}}{\ln \left(\frac{4}{5}\right)}$
$n-1=17.1$
$n=18.1$
$n=19$
b)
$S_{n}=\frac{U_{n}\left(1-r^{n}\right)}{1-r}$
$S_{n}=\frac{45\left(1-\left(\frac{4}{5}\right)^{n}\right)}{1-\frac{4}{5}}$
$S_{n}=\frac{45\left(1-\left(\frac{4}{5}\right)^{n}\right)}{\frac{1}{5}}$
$S_{n}=225\left(1-\left(\frac{4}{5}\right)^{n}\right)$
Find the least value of \boldsymbol{n} such that the sum of the first \boldsymbol{n} terms of the sequence is more than 200.
$225\left(1-\left(\frac{4}{5}\right)^{n}\right)>200$
Use table

$n=10$
Or graph

$n=10$

Solve
$225\left(1-\left(\frac{4}{5}\right)^{n}\right)=200$
$1-\left(\frac{4}{5}\right)^{n}=\frac{200}{225}$
$\left(\frac{4}{5}\right)^{n}=\frac{20}{225}$
$\ln \left(\frac{4}{5}\right)^{n}=\ln \left(\frac{20}{225}\right)$
$n=\frac{\ln \left(\frac{20}{225}\right)}{\ln \left(\frac{4}{5}\right)}$
$n=9.85$
$n=10$
c)

Find the sum to infinity.
$S_{\infty}=\frac{U_{1}}{1-r}$
$S_{\infty}=\frac{45}{1-\frac{4}{5}}$
$S_{\infty}=\frac{45}{\frac{1}{5}}$
$S_{\infty}=45 \times 5=225$

