The $2 \mathrm{nd}, 3 \mathrm{rd}$ and 6 th terms of an arithmetic sequence with common difference $d, d \neq 0$ form the first three terms of a geometric sequence, with common ratio, r.
The 1st term of the arithmetic sequence is $\mathbf{- 2}$.
a) Find \boldsymbol{d}.

The sum of the first \boldsymbol{n} terms of the geometric sequence exceeds the sum of the first \boldsymbol{n} terms of the arithmetic sequence by at least 1000.
b) Find the least value of \boldsymbol{n} for which this occurs.
a.
first term is -2

$$
\begin{gathered}
U_{1}=-2 \\
U_{2}=-2+d \\
U_{3}=-2+2 d \\
U_{6}=-2+5 d
\end{gathered}
$$

Geometric sequence is U_{2}, U_{3}, U_{6}

$$
-2+d,-2+2 d,-2+5 d
$$

$$
r=\frac{U_{2}}{U_{1}}
$$

$$
r=\frac{-2+2 d}{-2+d}
$$

$$
r=\frac{U_{3}}{U_{2}}
$$

$$
\begin{gathered}
\frac{-2+2 d}{-2+d}=\frac{-2+5 d}{-2+2 d} \\
(-2+2 d)(-2+2 d)=(-2+5 d)(-2+d)
\end{gathered}
$$

Expand and simplify

$$
\begin{gathered}
4-8 d+4 d^{2}=4-12 d+5 d^{2} \\
0=d^{2}-4 d \\
0=d(d-4) \\
d=0, d=4
\end{gathered}
$$

We know that
$d \neq 0$

$$
d=4
$$

Check by subsituting back into original terms

$$
\begin{gathered}
U_{2}=-2+4=2 \\
U_{3}=-2+8=6 \\
U_{6}=-2+20=18
\end{gathered}
$$

$$
2,6,18
$$

Geometric
sequence with r
= 3
b.
sum of the first \boldsymbol{n} terms of the geometric sequence

$$
\begin{gathered}
S_{n}=\frac{U_{1}\left(r^{n}-1\right)}{r-1} \\
S_{n_{g}}=\frac{2\left(3^{n}-1\right)}{3-1} \\
S_{n_{g}}=3^{n}-1
\end{gathered}
$$

sum of the first \boldsymbol{n}
terms of the arithmetic sequence

$$
\begin{gathered}
S_{n}=\frac{n}{2}\left(2 U_{1}+(n-1) d\right) \\
S_{n_{a}}=\frac{n}{2}(2(-2)+(n-1) \times 4) \\
S_{n_{a}}=\frac{n}{2}(-4+4 n-4) \\
S_{n_{a}}=\frac{n}{2}(-8+4 n) \\
S_{n_{a}}=-4 n+2 n^{2}
\end{gathered}
$$

The sum of the first \boldsymbol{n} terms of the geometric sequence exceeds the sum of the first \boldsymbol{n} terms of the arithmetic sequence by at least 1000.

$$
\begin{gathered}
S_{n_{g}}-S_{n_{a}}>1000 \\
3^{n}-1-\left(-4 n+2 n^{2}\right)>1000
\end{gathered}
$$

Solve using
calculator

$$
n=7
$$

