$\$ 10000$ is invested in a bank receiving 4\% interest at the end of each year. How long does it take before the investment doubles in value?

$$
\begin{aligned}
\text { After } 1 \text { year } A & =10000 \times 1.04 \\
\text { After } 2 \text { years } A & =(10000 \times 1.04) \times 1.04 \\
A & =10000 \times 1.04^{2} \\
\text { After } 3 \text { years } A & =10000 \times 1.04^{3}
\end{aligned}
$$

After n years $A=10000 \times 1.04^{n}$

How long does it take before the investment doubles in value?

$$
10000 \times 1.04^{n}=20000
$$

Solve for n

$$
\begin{array}{r}
1.04^{n}=\frac{20000}{10000} \\
1.04^{n}=2
\end{array}
$$

Take logs of both sides

$$
\begin{array}{r}
\ln \left(1.04^{n}\right)=\ln (2) \\
\operatorname{nln}(1.04)=\ln (2) \\
\mathrm{n}=\frac{\ln (2)}{\ln (1.04)}
\end{array}
$$

We can also use the calculator to solve.
The table function is useful here
$10000 \times 1.04^{n}=20000$
 $\mathrm{n}=18$

You can also solve using the graph mode

