Geometric Sequences

A geometric sequence has a common ratio

x3 x3 x3
$\cap \cap \cap$
$2,6,18,54, \ldots, 2 \times 3^{n-1}$

$U_{1}, U_{1} \times r, U_{1} \times r^{2}, U_{1} \times r^{3}, \ldots U_{1} \times r^{n-1}$
The nth term of a geometric sequence, $U_{\mathrm{n}}=U_{1} \times r^{n-1}$

Series

A series is formed when we add terms together: $2+6+18+54$
We can find the sum of this series using the formulae
$S_{n}=\frac{U_{1}\left(r^{n}-1\right)}{r-1}$, useful when $r>1$
$S_{n}=\frac{U_{1}\left(1-r^{n}\right)}{1-r}$, useful when $r<1$
If $-1<r<1$, the series converges and we can find the sum to infinity
$S_{\infty}=\frac{U_{1}}{1-r} \quad$ if $-1<r<1$

Solving Problems with GDC

You can make good use of your graphical calculator to find out how many terms there are in a sequence. The table function is particularly useful:

```
目 [Math[Rad [Norm1] d/G]a+bi]
Y 1=10000\times1.04^(x)
    X Y Y1 
        16 18729
        17 19479
        18 20258
        19 21068
                            20258.16515
FORMULA DELETE ROW EDIT GPH-CON GPH-PLT
```

