The sum of the first three terms of a geometric series is 61 .
The sum to infinity is 125 .
Find the common ratio.

$$
\begin{aligned}
& S_{n}=\frac{U_{1}\left(1-r^{n}\right)}{1-r}=\frac{U_{1}\left(r^{n}-1\right)}{r-1} \\
& S_{\infty}=\frac{U_{1}}{1-r}, \quad-1<r<1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{U_{1}\left(1-r^{3}\right)}{1-r}=61 \\
& \frac{U_{1}}{1-r}=125
\end{aligned}
$$

$$
\begin{gathered}
\frac{U_{1}\left(1-r^{3}\right)}{1-r}=61 \\
\frac{U_{1}}{1-r}\left(1-r^{3}\right)=61 \\
125\left(1-r^{3}\right)=61 \\
1-r^{3}=\frac{61}{125} \\
r^{3}=1-\frac{61}{125} \\
r^{3}=\frac{125}{125}-\frac{61}{125} \\
r^{3}=\frac{64}{125} \\
r=\sqrt[3]{\frac{64}{125}} \\
r=\frac{\sqrt[3]{64}}{\sqrt[3]{125}} \\
r=\frac{4}{5}
\end{gathered}
$$

