The world record times in seconds for the women's 100 m sprint from 1970 onwards are given below

Year (x)	72	76	76	77	83	83	84	88
Time (y)	11.07	11.04	11.01	10.88	10.81	10.79	10.76	10.49

Use your calculator to write down
a) \bar{x}, the mean year
b) \bar{y}, the mean time
c) r, Pearson's product-moment correlation coefficient

The equation of the regression line y on x is $y=a x+b$
d) Find the values of a and b for these data
e) Show that $\mathrm{M}(\bar{x}, \bar{y})$ lies on this line
f) Use the regression line to estimate the world record time in 2024
a) $\quad \bar{x}=79.875=79.9$ to 3 s.f.
b) $\bar{y}=10.85625=10.9$ to 3 s.f.
c) $\quad R=-0.946$
d) $y=-0.0334 x+13.5$
e) $y=-0.0334 x+13.5$
$y=-0.0334 \times 79.875+13.527$
$y=10.9$
Note that if we use values given to 3 s.f. in the calculation, we get $\mathrm{y}=10.8$
f) We might think that we could use $x=124$ to make this prediction. However, we cannot reliably make a prediction outside of the interval of values given (extrapolation).
Therefore, we cannot reliably make a prediction for 2024

