A function is given by $f(x)=-x^{3}+6 x^{2}+4$
a) Find the coordinates of any stationary points and describe their nature
b) Determine the values of x such that $f(x)$ is a increasing function
c) Find the coordinates of the point of inflexion
a)

$$
f(x)=-x^{3}+6 x^{2}+4
$$

Differentiate to find $f^{\prime}(x)$
$f^{\prime}(x)=-3 x^{2}+12 x$

$$
\text { Solve } f^{\prime}(x)=0
$$

$-3 x^{2}+12 x=0$
$3 x(-x+4)=0$
$x=0, x=4$
Find y coordinates
$f(0)=-0^{3}+6 \cdot 0^{2}+4=4$
$f(4)=-4^{3}+6 \cdot 4^{2}+4=36$
$(0,4)$ and $(4,36)$
Determine their nature
Differentiate to find $f^{\prime \prime}(x)$
$f^{\prime \prime}(x)=-6 x+12$
$f^{\prime \prime}(0)=-6(0)+12=12 \quad f^{\prime \prime}(0)>0 \quad \Rightarrow$ maximum
$f^{\prime \prime}(4)=-6(4)+12=-12 \quad f^{\prime \prime}(0)<0 \quad \Rightarrow$ minimum

Maximum at $(0,4)$
Minimum at $(4,36)$
b)

Function is increasing where $f^{\prime}(x)>0$
Function is increasing where $0<x<4$
c)
$-6 x+12=0$
$-6 x=-12$
$x=2$
Solve $f^{\prime \prime}(x)=0$

Since $x=2$ is not a stationary point, we know that it is a non-stationary point of inflexion

Find y coordinate
$f(2)=-(2)^{3}+6(2)^{2}+4=20$
$(2,20)$

