Find the co-ordinates of the stationary points on the curve $y=x^{4}-4 x^{3}$ and determine their nature. Sketch the curve.

Solve $\frac{d y}{d x}=0\left\{_{\text {if } \frac{d^{2} y}{d x^{2}}<0} \quad\right.$...then local maximum $\quad \begin{array}{ll}\text { if } \frac{d^{2} y}{d x^{2}}>0 & \text {..then local minimum } \\ \text { if } \frac{d^{2} y}{d x^{2}}=0 & \text {...we cannot say } \quad \text { Check } \frac{d y}{d x} \text { before } \& \text { after }\end{array}$
$y=x^{4}-4 x^{3}$
Differentiate with respect to x
$\frac{d y}{d x}=4 x^{3}-4\left(3 x^{2}\right)$
$\frac{d y}{d x}=4 x^{3}-12 x^{2}$
Stationary points occur where $\frac{d y}{d x}=0$
Solve $\frac{d y}{d x}=0$
$4 x^{3}-12 x^{2}=0$
$4 x^{2}(x-3)=0$
$4 x^{2}=0, \quad x-3=0$
$x=0 \quad, \quad x=3$
Find y coordinates
When $x=0, \quad y=(0)^{4}-4(0)^{3}=0$
When $x=3, \quad y=(3)^{4}-4(3)^{3}=-27$
$\frac{d y}{d x}=4 x^{3}-12 x^{2}$
Differentiate with respect to x
$\frac{d^{2} y}{d x^{2}}=12 x^{2}-24 x$
Find the sign of $\frac{d^{2} y}{d x^{2}}$ for each stationary point
When $x=3$,
$\frac{d^{2} y}{d x^{2}}=12(3)^{2}-24(3)=36>0$ Since $\frac{d^{2} y}{d x^{2}}>0$
\Rightarrow Local Minimum at $x=3$
Now check for $x=0$
When $x=0$,
$\frac{d^{2} y}{d x^{2}}=12(0)^{2}-24(0)=0$
Need to check $\frac{d y}{d x}$ before and after
When $x=-1$,
$\frac{d y}{d x}=4(-1)^{3}-12(-1)^{2}<0$
When $x=1, \quad \frac{d y}{d x}=4(1)^{3}-12(1)^{2}<0$

Point of inflexion at $(0,0)$

$$
\begin{aligned}
& y=x^{4}-4 x^{3} \\
& x^{4}-4 x^{3}=0 \\
& x^{3}(x-4)=0 \\
& x=0, x=4
\end{aligned}
$$

