Find the co-ordinates of the stationary points on the curve $y = x^4 - 4x^3$ and determine their nature. Sketch the curve.

Solve
$$\frac{dy}{dx} = 0$$

 $if \frac{d^2y}{dx^2} < 0$...then local maximum
 $if \frac{d^2y}{dx^2} > 0$...then local minimum
 $if \frac{d^2y}{dx^2} = 0$...we cannot say Check $\frac{dy}{dx}$ before & after

$$\frac{dy}{dx} = 4x^3 - 4(3x^2)$$
$$\frac{dy}{dx} = 4x^3 - 12x^2$$

 $y = x^4 - 4x^3$

Stationary points occur where
$$\frac{dy}{dx} = 0$$

Solve $\frac{dy}{dx} = 0$

 $4x^{3} - 12x^{2} = 0$ $4x^{2}(x - 3) = 0$ $4x^{2} = 0, \quad x - 3 = 0$ x=0 , x=3

Find y coordinates

When x = 0, $y = (0)^4 - 4(0)^3 = 0$ When x = 3, $y = (3)^4 - 4(3)^3 = -27$

$$\frac{dy}{dx} = 4x^3 - 12x^2$$

$$\frac{d^2y}{dx^2} = 12x^2 - 24x$$

When
$$x = 3$$
,
 $\frac{d^2y}{dx^2} = 12(3)^2 - 24(3) = 36 > 0$

Find the sign of
$$\frac{d^2y}{dx^2}$$
 for each stationary point
Since $\frac{d^2y}{dx^2} > 0$
 \Rightarrow Local Minimum at $x = 3$

Differentiate with respect to x

Now check for x = 0

When
$$x = 0$$
,
 $\frac{d^2 y}{dx^2} = 12(0)^2 - 24(0) = 0$

Need to check $\frac{dy}{dx}$ before and after

When
$$x = -1$$
,
 $\frac{dy}{dx} = 4(-1)^3 - 12(-1)^2 < 0$

When
$$x = 1$$
, $\frac{dy}{dx} = 4(1)^3 - 12(1)^2 < 0$

