Find the coordinates of the point of inflexion on the curve $y=x^{3}-6 x^{2}+13 x-9$

Non-stationary points of inflexion occur when
$\frac{d^{2} y}{d x^{2}}=0 \quad$ and $\frac{d y}{d x} \neq 0$

$$
y=x^{3}-6 x^{2}+13 x-9
$$

$$
\text { Find } \frac{d y}{d x}
$$

$\frac{d y}{d x}=3 x^{2}-12 x+13$
$\frac{d^{2} y}{d x^{2}}=6 x-12$
Find $\frac{d^{2} y}{d x^{2}}$

Point of inflexion occurs when $\frac{d^{2} y}{d x^{2}}=0$
Solve $\frac{d^{2} y}{d x^{2}}=0$

$$
\begin{aligned}
6 x-12 & =0 \\
6 x & =12 \\
x & =2
\end{aligned}
$$

Check $\frac{d y}{d x}$ at this point
When $x=2, \frac{d y}{d x}=3(2)^{2}-12(2)+13$

$$
\begin{aligned}
& \frac{d y}{d x}=12-24+13 \\
& \frac{d y}{d x} \neq 0
\end{aligned}
$$

Hence, there is a non-stationary point of inflexion at $x=2$
Find y coordinate

$$
\text { When } \begin{aligned}
x=2, y & =(2)^{3}-6(2)^{2}+13(2)-9 \\
y & =8-24+26-9 \\
y & =1
\end{aligned}
$$

There is a point of inflexion at $(2,1)$

In fact, we can show that there are no stationary points
Solve $\frac{d y}{d x}=0$

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2}-12 x+13 \\
& 3 x^{2}-12 x+13=0 \\
& x=\frac{12 \pm \sqrt{(-12)^{2}-4(3)(13)}}{2(3)} \\
& x=\frac{12 \pm \sqrt{144-156}}{6} \\
& x=\frac{12 \pm \sqrt{-14}}{6}
\end{aligned}
$$

Use quadratic formula
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

The equation has no real roots
There are no stationary points

