Find $f^{\prime}(4)$ for the function $f(x)=2 x+\frac{8}{\sqrt{x}}+\frac{32}{x}$
$f(x)=2 x+\frac{8}{\sqrt{x}}+\frac{32}{x}$
Write each of the terms as x^{n}
$f(x)=2 x+8 x^{-\frac{1}{2}}+32 x^{-1}$
Use the power rule to differentiate each of the terms

$$
\frac{d}{d x}\left(a x^{n}\right)=a n x^{n-1}
$$

$f^{\prime}(x)=2+8\left(-\frac{1}{2}\right) x^{-\frac{3}{2}}+32(-1) x^{-2}$
Simplify
$f^{\prime}(x)=2-4 x^{-\frac{3}{2}}-32 x^{-2}$
$f^{\prime}(x)=2-\frac{4}{x^{\frac{3}{2}}}-\frac{32}{x^{2}}$
$f^{\prime}(x)=2-\frac{4}{\sqrt{x^{3}}}-\frac{32}{x^{2}}$
Now substitute $\mathrm{x}=4$
$f^{\prime}(4)=2-\frac{4}{\sqrt{4^{3}}}-\frac{32}{4^{2}}$
$f^{\prime}(4)=2-\frac{4}{\sqrt{64}}-\frac{32}{16}$
$f^{\prime}(4)=2-\frac{4}{8}-\frac{32}{16}$
$f^{\prime}(4)=2-\frac{1}{2}-2$
$f^{\prime}(4)=-\frac{1}{2}$

