An open cylindrical tin is to be made from a large sheet of metal.

1. Write an expression for the volume of the tin in terms of $r$, its radius and $\boldsymbol{h}$, its height.
2. The tin should have a volume of $\frac{\pi}{8} m^{3}$. Write an expression for the $\boldsymbol{h}$ in terms of $\boldsymbol{r}$ :
3. Show that the total surface area of the tin, A can be written

$$
A=\pi r^{2}+\frac{\pi}{4 r}
$$

4. To minimize costs, the tin should be made with the minimum possible surface area.
Find $\frac{d A}{d x}$ and hence find the dimensions of the tin which make the area a minimum.
5. Find $\frac{d^{2} A}{d x^{2}}$ and justify that these dimensions give the minimum area.
6. 


2.

$$
\begin{aligned}
& \pi r^{2} h=\frac{\pi}{8} \\
& h=\frac{1}{8 r^{2}}
\end{aligned}
$$

$$
V=\pi r^{2} h
$$

3. 



$$
\begin{aligned}
& A=2 \pi r^{2}+2 \pi r h \\
& A=2 \pi r^{2}+2 \pi r \frac{1}{8 r^{2}} \\
& A=\pi r^{2}+\frac{\pi}{4 r}
\end{aligned}
$$

4. Minimum occurs where $\frac{d A}{d r}=0$

$$
\begin{aligned}
& A=\pi r^{2}+\frac{\pi}{4} r^{-1} \\
& \frac{d A}{d r}=2 \pi \mathrm{r}-\frac{\pi}{4} r^{-2} \\
& 2 \pi \mathrm{r}-\frac{\pi}{4 \mathrm{r}^{2}}=0 \\
& 2 \pi \mathrm{r}=\frac{\pi}{4 \mathrm{r}^{2}} \\
& r^{3}=\frac{1}{8} \\
& r=\sqrt[3]{\frac{1}{8}} \\
& r=\frac{1}{2} \\
& h=\frac{1}{8 r^{2}} \\
& h=\frac{1}{8\left(\frac{1}{2}\right)^{2}} \\
& h=\frac{1}{8 \cdot \frac{1}{4}} \\
& h=\frac{1}{2} \\
& \frac{d A}{d r}=2 \pi \mathrm{r}-\frac{\pi}{4} r^{-2} \\
& \frac{d^{2} A}{d r^{2}}=2 \pi+2 \frac{\pi}{4} r^{-3} \\
& \frac{d^{2} A}{d r^{2}}=2 \pi+\frac{\pi}{2 r^{3}}
\end{aligned}
$$

5. 

When $r=\frac{1}{2}, \frac{d^{2} A}{d r^{2}}=2 \pi+\frac{\pi}{2\left(\frac{1}{2}\right)^{3}}$

$$
\frac{d^{2} A}{d r^{2}}>0, \text { hence } \mathrm{A} \text { is a minimum }
$$

