A drinks manufacturer wants a design for a new can for their mini drinks collection, volume $=170 \mathrm{ml}$. Your job is to find the can that will contain a volume of $170 \mathrm{ml}=170 \mathrm{~cm}^{3} \approx 54 \pi \mathrm{~cm}^{3}$ and that will minimize the amount of aluminium used.

The can is a closed cylinder of base \boldsymbol{r} and height \boldsymbol{h} has a volume of $54 \pi \mathrm{~cm}^{3}$

Surface Area $A=2 \pi r^{2}+2 \pi r h$

$$
\begin{aligned}
& \text { Volume } V=\pi r^{2} h \\
& 54 \pi=\pi r^{2} h \\
& \frac{54}{r^{2}}=h \\
& A=2 \pi r^{2}+2 \pi r \frac{54}{r^{2}} \\
& A=2 \pi r^{2}+2 \pi \frac{54}{r} \\
& A=2 \pi r^{2}+108 \pi r^{-1}
\end{aligned}
$$

Minimum area occurs when $\frac{d A}{d r}=0$

$$
\begin{aligned}
& \frac{d A}{d r}=4 \pi r-108 \pi r^{-2} \\
& 4 \pi r-\frac{108 \pi}{r^{2}}=0 \\
& 4 \pi r=\frac{108 \pi}{r^{2}} \\
& r^{3}=\frac{108 \pi}{4 \pi} \\
& r^{3}=27 \\
& r=3
\end{aligned}
$$

$$
\begin{aligned}
& h=\frac{54}{r^{2}} \\
& h=\frac{54}{3^{2}} \\
& h=6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Verify minimum } \begin{array}{l}
\frac{d A}{d r}=4 \pi r-108 \pi r^{-2} \\
\frac{d^{2} A}{d r^{2}}=4 \pi+216 \pi r^{-3} \\
\text { When } r=3 \frac{d^{2} A}{d r^{2}}>0, \text { hence minimum }
\end{array}
\end{aligned}
$$

