A drinks manufacturer wants a design for a new can for their mini drinks collection, volume=170ml. Your job is to find the can that will contain a volume of $170ml = 170cm^3 \approx 54\pi cm^3$ and that will minimize the amount of aluminium used.

The can is a closed cylinder of base r and height h has a volume of 54π cm³

Surface Area $A = 2\pi r^2 + 2\pi rh$

Volume
$$V = \pi r^2 h$$

 $54\pi = \pi r^2 h$
 $\frac{54}{r^2} = h$

$$A = 2\pi r^{2} + 2\pi r \frac{54}{r^{2}}$$
$$A = 2\pi r^{2} + 2\pi \frac{54}{r}$$
$$A = 2\pi r^{2} + 108\pi r^{-1}$$

Minimum area occurs when $\frac{dA}{dr} = 0$

$$\frac{dA}{dr} = 4\pi r - 108\pi r^{-2}$$
$$4\pi r - \frac{108\pi}{r^2} = 0$$
$$4\pi r = \frac{108\pi}{r^2}$$
$$r^3 = \frac{108\pi}{4\pi}$$
$$r^3 = 27$$
$$r = 3$$

$$h = \frac{54}{r^2}$$
$$h = \frac{54}{3^2}$$
$$h = 6$$

Verify minimum
$$\frac{dA}{dr} = 4\pi r - 108\pi r^{-2}$$

 $\frac{d^2A}{dr^2} = 4\pi + 216\pi r^{-3}$
When $r = 3$ $\frac{d^2A}{dr^2} > 0$, hence minimum