A rectangle ABCD is drawn so that its lower vertices are on the x-axis and its upper vertices are on the curve $f(x)=\sqrt{6-3 x^{2}}$ as shown in the following diagram

Let $O A=x$
The area of this rectangle is denoted by A.
(a) Write down an expression for A in terms of x.
(b) Find the maximum value of A.

Width $=2 x$
Height $=\sqrt{6-3 x^{2}}$

$$
A=2 x \sqrt{6-3 x^{2}}
$$

Minimum area occurs
when $\frac{d A}{d x}=0$

$$
A=2 x \sqrt{6-3 x^{2}}
$$

This is a product so we need to use the Product Rule
$A=u v$
$\frac{d A}{d x}=u \frac{d v}{d x}+\frac{d u}{d x} v$

$$
\begin{array}{ll}
u=2 x & v=\left(6-3 x^{2}\right)^{\frac{1}{2}} \\
\frac{d u}{d x}=2 & \frac{d v}{d x}=\frac{1}{2}(-6 x)\left(6-3 x^{2}\right)^{-\frac{1}{2}} \\
\frac{d v}{d x}=\frac{-3 x}{\sqrt{6-3 x^{2}}} \\
\frac{d A}{d x}=2 x \frac{-3 x}{\sqrt{6-3 x^{2}}}+\sqrt{6-3 x^{2}} \cdot 2 &
\end{array}
$$

Solve $\frac{d A}{d x}=0$

$$
\begin{aligned}
& \frac{-6 x^{2}}{\sqrt{6-3 x^{2}}}+2 \sqrt{6-3 x^{2}}=0 \\
& 2 \sqrt{6-3 x^{2}}=\frac{6 x^{2}}{\sqrt{6-3 x^{2}}} \\
& 6-3 x^{2}=3 x^{2} \\
& 6=6 x^{2} \\
& x^{2}=1 \\
& x= \pm 1 \\
& A=2 x \sqrt{6-3 x^{2}} \\
& A=2 \sqrt{6-3} \\
& A=2 \sqrt{3}
\end{aligned}
$$

