Let $f(x)=x^{2}(2 x-3)^{3}$
a) Find $f^{\prime}(x)$
b) The graph of $y=f(x)$ has stationary points at $x=0, x=\frac{3}{2}$ and $x=a$. Find the value of a
a) $f(x)=x^{2}(2 x-3)^{3}$

$$
\begin{aligned}
\frac{d}{d x}[2 x-3]^{3} & =3(2)[2 x-3]^{2} \\
& =6[2 x-3]^{2}
\end{aligned}
$$

This is the product of 2 functions.
Before we use the product rule, we need to use the chain rule to differentiate $(2 x-3)^{3}$
We know
$\frac{d}{d x}[f(x)]^{n}=n f^{\prime}(x)[f(x)]^{n-1}$

Use the Product Rule to find $f^{\prime}(x)$
$f(x)=g(x) h(x)$
$f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x)$
$f^{\prime}(x)=2 x(2 x-3)^{3}+x^{2} \cdot 6(2 x-3)^{2}$
$f^{\prime}(x)=2 x(2 x-3)^{3}+6 x^{2}(2 x-3)^{2}$
We can factorise this answer which will help up with part b
There is a common factor of $2 x(2 x-3)^{2}$
$f^{\prime}(x)=2 x(2 x-3)^{2}(2 x-3+3 x)$
$f^{\prime}(x)=2 x(2 x-3)^{2}(5 x-3)$
b)
$2 x(2 x-3)^{2}(5 x-3)=0$
$2 x=0,(2 x-3)^{2}=0,5 x-3=0$
$x=0, x=\frac{3}{2}, x=\frac{3}{5}$
Stationary points are when $f^{\prime}(x)=0$
Solve $f^{\prime}(x)=0$
$a=\frac{3}{5}$
$y=f(x)$ has stationary points at $\mathrm{x}=0, \mathrm{x}=\frac{3}{2}$ and $\mathrm{x}=\mathrm{a}$

