Let $y=x e^{x}$
a) Find $\frac{d y}{d x}$
b) Show that $\frac{d^{2} x}{d y^{2}}=e^{x}(2+x)$
c) Find the coordinates of the stationary point and show that it is a local minimum.
a) $y=x e^{x}$

This is a product so we need to use the Product Rule

$$
\begin{aligned}
& y=u v \\
& \frac{d y}{d x}=u \frac{d v}{d x}+\frac{d u}{d x} v
\end{aligned}
$$

$\frac{d y}{d x}=x e^{x}+1 \cdot e^{x}$
$\frac{d y}{d x}=x e^{x}+e^{x}$
b) $\frac{d y}{d x}=x e^{x}+e^{x}$
$\frac{d^{2} x}{d y^{2}}=x e^{x}+1 \cdot e^{x}+e^{x}$
$\frac{d^{2} x}{d y^{2}}=x e^{x}+e^{x}+e^{x}$
$\frac{d^{2} x}{d y^{2}}=x e^{x}+2 e^{x}$
Use Product Rule agin for $x e^{x}$

Factorise
$\frac{d^{2} x}{d y^{2}}=e^{x}(x+2)$
c) $\frac{d y}{d x}=x e^{x}+e^{x}$
$x e^{x}+e^{x}=0$
For stationary point solve $\frac{d y}{d x}=0$

Factorise

$e^{x}(x+1)=0$
$e^{x}=0, x+1=0$
No solutions, $x=-1$
Justify this is a minimum
When $\mathrm{x}=-1, \frac{d^{2} x}{d y^{2}}=e^{(-1)}(-1+2)$
$\frac{d^{2} x}{d y^{2}}=e^{-1}$
Since $\frac{d^{2} x}{d y^{2}}>0$,
there is a local minimum at $\mathrm{x}=-1$

