Let $f(x)=\tan x$. $\left(\frac{\pi}{3}, \sqrt{3}\right)$ is a point that lies on the graph of
a) Given that $\tan x=\frac{\sin x}{\cos x}$ find $f^{\prime}(x)$
b) Show that $f^{\prime}\left(\frac{\pi}{3}\right)=4$
c) Find the equation of the normal to the curve $y=f(x)$ at the point A
d) Show that the normal crosses the y axis at $\sqrt{3}+\frac{\pi}{12}$
a) $\mathrm{f}(\mathrm{x})=\tan x=\frac{\sin x}{\cos x}$

This is a quotient so we need to use the Quotient Rule

$$
\begin{aligned}
& f(x)=\frac{g(x)}{h(x)} \\
& f^{\prime}(x)=\frac{h(x) g^{\prime}(x)-h^{\prime}(x) g(x)}{[h(x)]^{2}}
\end{aligned}
$$

$g(x)=\sin x \quad \Rightarrow g^{\prime}(x)=\cos x$
$h(x)=\cos x \quad \Rightarrow h^{\prime}(x)=-\sin x$
$f^{\prime}(x)=\frac{\cos x \cos x-(-\sin x) \sin x}{[\cos x]^{2}}$
$f^{\prime}(x)=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}$
From the formula booklet, we know $\sin ^{2} x+\cos ^{2} x \equiv 1$
$f^{\prime}(x)=\frac{1}{\cos ^{2} x}$
You may write this answer as
$f^{\prime}(x)=\sec ^{2} x$
b) $f^{\prime}\left(\frac{\pi}{3}\right)=\frac{1}{\left(\cos \frac{\pi}{3}\right)^{2}}$

$$
\cos \frac{\pi}{3}=\cos 60^{\circ}=\frac{1}{2}
$$

$f^{\prime}\left(\frac{\pi}{3}\right)=\frac{1}{\left(\frac{1}{2}\right)^{2}}=\frac{1}{\left(\frac{1}{4}\right)}=4$
c) Gradient of the tangent $=4$

$$
\text { Gradient of normal }=-\frac{1}{\text { gradient of tangent }}
$$

Gradient of the normal $=-\frac{1}{4}$

Equation of the normal
$y=-\frac{1}{4} x+c$

When $\mathrm{x}=\frac{\pi}{3}, \mathrm{y}=\sqrt{3}$
$\sqrt{3}=-\frac{1}{4}\left(\frac{\pi}{3}\right)+c$
$\sqrt{3}=-\frac{\pi}{12}+c$
$\sqrt{3}+\frac{\pi}{12}=c$
Equation of the normal
$y=-\frac{1}{4} x+\sqrt{3}+\frac{\pi}{12}$
d) Hence the y intercept $=\sqrt{3}+\frac{\pi}{12}$

