Let $f(x)=\frac{\ln x}{x}, x>0$
a) Show that $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}$
b) Find $f^{\prime \prime}(x)$
c) The graph of f has a point of inflexion at A. Find the x-coordinate of A.
a) $f(x)=\frac{\ln x}{x} \quad$ This is a quotient so we need to use the Quotient Rule

$$
\begin{aligned}
& f(x)=\frac{g(x)}{h(x)} \\
& f^{\prime}(x)=\frac{h(x) g^{\prime}(x)-h^{\prime}(x) g(x)}{[h(x)]^{2}}
\end{aligned}
$$

$f^{\prime}(x)=\frac{x \cdot \frac{1}{x}-1 \cdot \ln x}{[x]^{2}}$
$f^{\prime}(x)=\frac{1-\ln x}{x^{2}}$
b) $f^{\prime}(x)=\frac{1-\ln x}{x^{2}} \quad$ We need to use the Quotient Rule again
$f^{\prime \prime}(x)=\frac{x^{2}\left(-\frac{1}{x}\right)-2 x(1-\ln x)}{\left[x^{2}\right]^{2}}$
$f^{\prime \prime}(x)=\frac{-x-2 x+2 x \ln x}{x^{4}}$
$f^{\prime \prime}(x)=\frac{-3 x+2 x \ln x}{x^{4}}$
$f^{\prime \prime}(x)=\frac{x(-3+2 \ln x)}{x^{4}}$
$f^{\prime \prime}(x)=\frac{-3+2 \ln x}{x^{3}}$
c)
$\frac{-3+2 \ln x}{x^{3}}=0$
Solve $f^{\prime \prime}(x)=0$

Since $x \neq 0$
$-3+2 \ln x=0$
$2 \ln x=3$
$\ln x=\frac{3}{2}$
Take inverse logs of each side of the equation
$x=e^{\frac{3}{2}}$

