Let $f(x)=e^{2 x} \cos x$
a) Find $f^{\prime}(x)$
b) Show that $f^{\prime \prime}(x)=4 f^{\prime}(x)-5 f(x)$
a) $f(x)=e^{2 x} \cos x$

Use the Product Rule to find $f^{\prime}(x)$

$$
\begin{aligned}
f(x) & =g(x) h(x) \\
f^{\prime}(x) & =g^{\prime}(x) h(x)+g(x) h^{\prime}(x)
\end{aligned}
$$

$$
f^{\prime}(x)=2 e^{2 x} \cos x+e^{2 x}(-\sin x)
$$

$$
f^{\prime}(x)=2 e^{2 x} \cos x-e^{2 x} \sin x
$$

$$
f^{\prime}(x)=e^{2 x}(2 \cos x-\sin x)
$$

b) $f^{\prime}(x)=e^{2 x}(2 \cos x-\sin x)$

Use the product rule again
$f^{\prime \prime}(x)=2 e^{2 x}(2 \cos x-\sin x)+e^{2 x}(-2 \sin x-\cos x)$
$f^{\prime \prime}(x)=e^{2 x}(4 \cos x-2 \sin x)+e^{2 x}(-2 \sin x-\cos x)$
$f^{\prime \prime}(x)=e^{2 x}(3 \cos x-4 \sin x)$
$f^{\prime \prime}(x)=e^{2 x}(8 \cos x-4 \sin x)-e^{2 x}(5 \cos x)$
$f^{\prime \prime}(x)=4 e^{2 x}(2 \cos x-\sin x)-5 e^{2 x}(\cos x)$
$f^{\prime \prime}(x)=4 f^{\prime}(x)-5 f(x)$ x)

