$$
f(x)=x^{3}(x-3)^{2}
$$

The function \boldsymbol{f} has three stationary points. Find the x coordinates of these points

$$
f(x)=g(x) h(x)
$$

$$
f^{\prime}(x)=g(x) h^{\prime}(x)+g^{\prime}(x) h(x)
$$

$$
\frac{d}{d x}[f(x)]^{n}=n \cdot f^{\prime}(x) \cdot[f(x)]^{n-1}
$$

Stationary points occur where $f^{\prime}(x)=0$. Factorise $f^{\prime}(x)$

Stationary points occur where $f^{\prime}(x)=0$

$$
\begin{aligned}
& f(x)=x^{3}(x-3)^{2} \\
& g(x)=x^{3} \quad h(x)=(x-3)^{2} \\
& g^{\prime}(x)=3 x^{2} \quad h^{\prime}(x)=2 \cdot 1(x-3)^{1} \\
& h^{\prime}(x)=2(x-3) \\
& f^{\prime}(x)=g(x) h^{\prime}(x) \quad+g^{\prime}(x) h(x) \\
& f^{\prime}(x)=x^{3} \cdot 2(x-3)+3 x^{2}(x-3)^{2} \\
& f^{\prime}(x)=2 x^{3}(x-3)+3 x^{2}(x-3)^{2} \\
& f^{\prime}(x)=x^{2}(x-3)(2 x)+x^{2}(x-3) 3(x-3) \\
& f^{\prime}(x)=x^{2}(x-3)(2 x+3(x-3)) \\
& f^{\prime}(x)=x^{2}(x-3)(2 x+3 x-9) \\
& f^{\prime}(x)=x^{2}(x-3)(5 x-9) \\
& x^{2}(x-3)(5 x-9)=0 \\
& x^{2}=0,(x-3)=0,(5 x-9)=0 \\
& x=0, \quad x=3, \quad x=\frac{9}{5}
\end{aligned}
$$

